剖析golang map的实现
在开发过程中,map是必不可少的数据结构,在Golang中,使用map或多或少会遇到与其他语言不一样的体验,比如访问不存在的元素会返回其类型的空值、map的大小究竟是多少,为什么会报”cannot take the address of”错误,遍历map的随机性等等。 本文希望通过研究map的底层实现,以解答这些疑惑。
1. 函数选择
golang中map是一个kv对集合。底层使用hash table,用链表来解决冲突,通过编译器配合runtime,所有的map对象都是共用一份代码。
对比其他语言
-
c++使用红黑树组织,性能稍低但是稳定性很好。使用模版在编译期生成代码,好处是效率高,但是缺点是代码膨胀、编译时间也会变长。
-
java使用的是hash table+链表/红黑树,当bucket内元素超过某个阈值时,该bucket的链表会转换成红黑树。java为了所有map共用一份代码,规定了只有Object的子类才能使用作为map的key,缺点是基础数据类型必须使用object包装一下才能使用map。
hash函数,有加密型和非加密型。加密型的一般用于加密数据、数字摘要等,典型代表就是md5、sha1、sha256、aes256这种;非加密型的一般就是查找。在map的应用场景中,用的是查找。选择hash函数主要考察的是两点:性能、碰撞概率。
具体hash函数的性能比较可以看:More-Hash-Function-Tests
golang使用的hash算法根据硬件选择,如果cpu支持aes,那么使用aes hash,否则使用memhash,memhash是参考xxhash、cityhash实现的,性能炸裂。
把hash值映射到buckte时,golang会把bucket的数量规整为2的次幂,而有m=2^b,则n%m=n&(m-1),用位运算规避mod的昂贵代价。
2. 结构组成
hashmap的定义位于 src/runtime/hashmap.go 中,一个map主要是由三个结构构成:
- hmap — map的最外层的数据结构,包括了map的各种基础信息、如大小、bucket。
- mapextra — 记录map的额外信息,例如overflow bucket。
- bmap — 代表bucket,每一个bucket最多放8个kv,最后由一个overflow字段指向下一个bmap,注意key、value、overflow字段都不显示定义,而是通过maptype计算偏移获取的。
首先我们看下hashmap和bucket的定义:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// A header for a Go map.
type hmap struct {
// Note: the format of the hmap is also encoded in cmd/compile/internal/gc/reflect.go.
// Make sure this stays in sync with the compiler's definition.
count int // # live cells == size of map. Must be first (used by len() builtin) 元素的个数
flags uint8 // 状态标志
B uint8 // log_2 of # of buckets (can hold up to loadFactor * 2^B items) 可以最多容纳 6.5 * 2 ^ B 个元素,6.5为装载因子
noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details 溢出的个数
hash0 uint32 // hash seed 哈希种子
buckets unsafe.Pointer // array of 2^B Buckets. may be nil if count==0. 桶的地址
oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing 旧桶的地址,用于扩容
nevacuate uintptr // progress counter for evacuation (buckets less than this have been evacuated) 搬迁进度,小于nevacuate的已经搬迁
extra *mapextra // optional fields
}
hmap.extra.nextOverflow
指向的是预分配的overflow bucket
,预分配的用完了那么值就变成nil
。
hmap.noverflow
是overflow bucket
的数量,当B
小于16
时是准确值,大于等于16
时是大概的值。
hmap.count
是当前map的元素个数,也就是len()
返回的值。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
// mapextra holds fields that are not present on all maps.
type mapextra struct {
// If both key and value do not contain pointers and are inline, then we mark bucket
// type as containing no pointers. This avoids scanning such maps.
// However, bmap.overflow is a pointer. In order to keep overflow buckets
// alive, we store pointers to all overflow buckets in hmap.extra.overflow and hmap.extra.oldoverflow.
// overflow and oldoverflow are only used if key and value do not contain pointers.
// overflow contains overflow buckets for hmap.buckets.
// oldoverflow contains overflow buckets for hmap.oldbuckets.
// The indirection allows to store a pointer to the slice in hiter.
overflow *[]*bmap
oldoverflow *[]*bmap
// nextOverflow holds a pointer to a free overflow bucket.
nextOverflow *bmap
}
其中,在v1.10后 mapextra
中是overflow, oldoverflow
分开的。在之前版本中 overflow
是一个指针,指向一个元素个数为2的数组,数组的类型是一个指针,指向一个slice,slice的元素是桶(bmap)的地址,这些桶都是溢出桶;为什么有两个?因为Go map在hash冲突过多时,会发生扩容操作,为了不全量搬迁数据,使用了增量搬迁,[0]表示当前使用的溢出桶集合,[1]是在发生扩容时,保存了旧的溢出桶集合;overflow存在的意义在于防止溢出桶被gc。
1
2
3
4
5
6
7
8
9
10
11
12
// A bucket for a Go map.
type bmap struct {
// tophash generally contains the top byte of the hash value
// for each key in this bucket. If tophash[0] < minTopHash,
// tophash[0] is a bucket evacuation state instead. 每个元素hash值的高8位,如果tophash[0] < minTopHash,表示这个桶的搬迁状态
tophash [bucketCnt]uint8
// Followed by bucketCnt keys and then bucketCnt values. 接下来是8个key、8个value,但是我们不能直接看到;为了优化对齐,go采用了key放在一起,value放在一起的存储方式,
// NOTE: packing all the keys together and then all the values together makes the
// code a bit more complicated than alternating key/value/key/value/... but it allows
// us to eliminate padding which would be needed for, e.g., map[int64]int8.
// Followed by an overflow pointer. 再接下来是hash冲突发生时,下一个溢出桶的地址
}
tophash的存在是为了快速试错,毕竟只有8位,比较起来会快一点。
3 设计原理
介绍完结构,我们就细说一下这么设计的原因。
3.1 hash值
哈希表的特点是会有一个哈希函数,对你传来的key进行哈希运算,得到唯一的值,一般情况下都是一个数值。Golang的map中也有这么一个哈希函数,也会算出唯一的值,对于这个值的使用,Golang也是很有意思。
Golang把求得的值按照用途一分为二:高位和低位。
如图所示,蓝色为高位,红色为低位。
然后低位用于寻找当前key属于hmap中的哪个bucket,而高位用于寻找bucket中的哪个key。上文中提到:bucket中有个属性字段是高位哈希值数组tophash
,这里存的就是蓝色的高位值,用来声明当前bucket中有哪些 key
,便于搜索查找。
3.2 bmap细节
在golang map中出现冲突时,不是每一个key都申请一个结构通过链表串起来,而是以bmap为最小粒度挂载,一个bmap可以放8个kv。这样减少对象数量,减轻管理内存的负担,利于gc。
如果插入时,bmap中key超过 8
,那么就会申请一个新的bmap(overflow bucket)挂在这个bmap的后面形成链表,优先用预分配的overflow bucket,如果预分配的用完了,那么就malloc一个挂上去。注意golang的map不会shrink,内存只会越用越多,overflow bucket中的key全删了也不会释放
hash值的高 8
位存储在bucket中的 tophash
字段。每个桶最多放 8
个kv对,所以 tophash
类型是数组 [8]uint8
。把高八位存储起来,这样不用完整比较key就能过滤掉不符合的key,加快查询速度。实际上当hash值的高八位小于常量minTopHash时,会加上minTopHash,区间[0, minTophash)的值用于特殊标记。查找key时,计算hash值,用hash值的高八位在tophash中查找,有tophash相等的,再去比较key值是否相同。如果 tophash[0] < minTopHash
,表示这个桶的搬迁状态。
1
2
3
4
5
6
7
8
// tophash calculates the tophash value for hash.
func tophash(hash uintptr) uint8 {
top := uint8(hash >> (sys.PtrSize*8 - 8))
if top < minTopHash {
top += minTopHash
}
return top
}
bmap中所有key存在一块,所有value存在一块,这样做方便内存对齐。 当key大于128字节时,bucket的key字段存储的会是指针,指向key的实际内容;value也是一样。
我们还知道golang中没有范型,为了支持map的范型,golang定义了一个maptype
类型,定义了这类key用什么hash函数、bucket的大小、怎么比较之类的,通过这个变量来实现范型。
3.3 扩容设计
bcuket挂接的链表越来越长,性能会退化,那么就要进行扩容,扩大bucket的数量。
当元素个数/bucket个数大于等于6.5时,就会进行扩容,把bucket数量扩成原本的两倍,当hash表扩容之后,需要将那些老数据迁移到新table上(源代码中称之为evacuate
), 数据搬迁不是一次性完成,而是逐步的完成(在insert
和remove
时进行搬移),这样就分摊了扩容的耗时。同时为了避免有个bucket一直访问不到导致扩容无法完成,还会进行一个顺序扩容,每次因为写操作搬迁对应bucket后,还会按顺序搬迁未搬迁的bucket,所以最差情况下n次写操作,就保证搬迁完大小为n的map。
扩容会建立一个大小是原来2倍的新的表,将旧的 bucket
搬到新的表中之后,并不会将旧的 bucket
从 oldbucket
中删除,而是加上一个已删除的标记。
只有当所有的 bucket
都从旧表移到新表之后,才会将 oldbucket
释放掉。 如果扩容过程中,阈值又超了呢?如果正在扩容,那么不会再进行扩容。
总体思路描述完,就看源码创建、查询、赋值、删除的具体实现。
4. 源码实现
4.1 创建makemap
map
的创建比较简单,在参数校验之后,需要找到合适的B来申请桶的内存空间,接着便是创建 hmap
这个结构,以及对它的初始化。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
// makemap implements Go map creation for make(map[k]v, hint).
// If the compiler has determined that the map or the first bucket
// can be created on the stack, h and/or bucket may be non-nil.
// If h != nil, the map can be created directly in h.
// If h.buckets != nil, bucket pointed to can be used as the first bucket.
func makemap(t *maptype, hint int, h *hmap) *hmap {
if hint < 0 || hint > int(maxSliceCap(t.bucket.size)) {
hint = 0
}
// initialize Hmap
if h == nil {
h = new(hmap)
}
h.hash0 = fastrand()
// find size parameter which will hold the requested # of elements
B := uint8(0)
for overLoadFactor(hint, B) {
B++
}
h.B = B
// allocate initial hash table
// if B == 0, the buckets field is allocated lazily later (in mapassign)
// If hint is large zeroing this memory could take a while.
if h.B != 0 {
var nextOverflow *bmap
h.buckets, nextOverflow = makeBucketArray(t, h.B, nil)
if nextOverflow != nil {
h.extra = new(mapextra)
h.extra.nextOverflow = nextOverflow
}
}
return h
}
hint
是一个启发值,启发初建map时创建多少个 bucket
,如果 hint
是 0
那么就先不分配 bucket
,lazy分配
。大概流程就是设置一下hash seed
、bucket数量
、实际申请bucket之类的,流程很简单。
然后我们在看下申请 bucket
实际干了啥:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
// makeBucketArray initializes a backing array for map buckets.
// 1<<b is the minimum number of buckets to allocate.
// dirtyalloc should either be nil or a bucket array previously
// allocated by makeBucketArray with the same t and b parameters.
// If dirtyalloc is nil a new backing array will be alloced and
// otherwise dirtyalloc will be cleared and reused as backing array.
func makeBucketArray(t *maptype, b uint8, dirtyalloc unsafe.Pointer) (buckets unsafe.Pointer, nextOverflow *bmap) {
base := bucketShift(b)
nbuckets := base
// For small b, overflow buckets are unlikely.
// Avoid the overhead of the calculation.
if b >= 4 {
// Add on the estimated number of overflow buckets
// required to insert the median number of elements
// used with this value of b.
nbuckets += bucketShift(b - 4)
sz := t.bucket.size * nbuckets
up := roundupsize(sz)
if up != sz {
nbuckets = up / t.bucket.size
}
}
if dirtyalloc == nil {
buckets = newarray(t.bucket, int(nbuckets))
} else {
// dirtyalloc was previously generated by
// the above newarray(t.bucket, int(nbuckets))
// but may not be empty.
buckets = dirtyalloc
size := t.bucket.size * nbuckets
if t.bucket.kind&kindNoPointers == 0 {
memclrHasPointers(buckets, size)
} else {
memclrNoHeapPointers(buckets, size)
}
}
if base != nbuckets {
// We preallocated some overflow buckets.
// To keep the overhead of tracking these overflow buckets to a minimum,
// we use the convention that if a preallocated overflow bucket's overflow
// pointer is nil, then there are more available by bumping the pointer.
// We need a safe non-nil pointer for the last overflow bucket; just use buckets.
nextOverflow = (*bmap)(add(buckets, base*uintptr(t.bucketsize)))
last := (*bmap)(add(buckets, (nbuckets-1)*uintptr(t.bucketsize)))
last.setoverflow(t, (*bmap)(buckets))
}
return buckets, nextOverflow
}
默认创建2^b
个bucket
,如果b大于等于4,那么就预先额外创建一些overflow bucket。除了最后一个overflow bucket,其余overflow bucket的overflow指针都是nil,最后一个overflow bucket的overflow指针指向bucket数组第一个元素,作为哨兵,说明到了到结尾了.
4.2 查询mapaccess1
对于给定的一个key,可以通过下面的操作找到它是否存在
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
// mapaccess1 returns a pointer to h[key]. Never returns nil, instead
// it will return a reference to the zero object for the value type if
// the key is not in the map.
// NOTE: The returned pointer may keep the whole map live, so don't
// hold onto it for very long.
func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
if raceenabled && h != nil {
callerpc := getcallerpc()
pc := funcPC(mapaccess1)
racereadpc(unsafe.Pointer(h), callerpc, pc)
raceReadObjectPC(t.key, key, callerpc, pc)
}
if msanenabled && h != nil {
msanread(key, t.key.size)
}
if h == nil || h.count == 0 {
return unsafe.Pointer(&zeroVal[0])
}
if h.flags&hashWriting != 0 {
throw("concurrent map read and map write")
}
alg := t.key.alg
hash := alg.hash(key, uintptr(h.hash0))
m := bucketMask(h.B)
b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
if c := h.oldbuckets; c != nil {
if !h.sameSizeGrow() {
// There used to be half as many buckets; mask down one more power of two.
m >>= 1
}
oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize)))
if !evacuated(oldb) {
b = oldb
}
}
top := tophash(hash)
for ; b != nil; b = b.overflow(t) {
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
continue
}
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
if t.indirectkey {
k = *((*unsafe.Pointer)(k))
}
if alg.equal(key, k) {
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
if t.indirectvalue {
v = *((*unsafe.Pointer)(v))
}
return v
}
}
}
return unsafe.Pointer(&zeroVal[0])
}
-
先定位出bucket,如果正在扩容,并且这个bucket还没搬到新的hash表中,那么就从老的hash表中查找。
-
在bucket中进行顺序查找,使用高八位进行快速过滤,高八位相等,再比较key是否相等,找到就返回value。如果当前bucket找不到,就往下找overflow bucket,都没有就返回零值。
这里我们可以看到,访问的时候,并不进行扩容的数据搬迁。并且并发有写操作时抛异常。
这里要注意的是,t.bucketsize
并不是bmap
的 size
,而是bmap
加上存储key、value、overflow指针,所以查找 bucket
的时候时候用的不是 bmap
的szie
。
4.3 赋值 mapassign
为一个 key
分配空间的逻辑,大致与查找类似;但增加了写保护和扩容的操作;注意,分配过程和删除过程都没有在 oldbuckets
中查找,这是因为首先要进行扩容判断和操作;如下:
扩容是整个hashmap的核心算法,我们放在后面重点研究。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
// Like mapaccess, but allocates a slot for the key if it is not present in the map.
func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
if h == nil {
panic(plainError("assignment to entry in nil map"))
}
if raceenabled {
callerpc := getcallerpc()
pc := funcPC(mapassign)
racewritepc(unsafe.Pointer(h), callerpc, pc)
raceReadObjectPC(t.key, key, callerpc, pc)
}
if msanenabled {
msanread(key, t.key.size)
}
if h.flags&hashWriting != 0 {
throw("concurrent map writes")
}
alg := t.key.alg
hash := alg.hash(key, uintptr(h.hash0))
// Set hashWriting after calling alg.hash, since alg.hash may panic,
// in which case we have not actually done a write.
h.flags |= hashWriting
if h.buckets == nil {
h.buckets = newobject(t.bucket) // newarray(t.bucket, 1)
}
again:
bucket := hash & bucketMask(h.B)
if h.growing() {
growWork(t, h, bucket)
}
b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
top := tophash(hash)
var inserti *uint8
var insertk unsafe.Pointer
var val unsafe.Pointer
for {
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
if b.tophash[i] == empty && inserti == nil {
inserti = &b.tophash[i]
insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
}
continue
}
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
if t.indirectkey {
k = *((*unsafe.Pointer)(k))
}
if !alg.equal(key, k) {
continue
}
// already have a mapping for key. Update it.
if t.needkeyupdate {
typedmemmove(t.key, k, key)
}
val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
goto done
}
ovf := b.overflow(t)
if ovf == nil {
break
}
b = ovf
}
// Did not find mapping for key. Allocate new cell & add entry.
// If we hit the max load factor or we have too many overflow buckets,
// and we're not already in the middle of growing, start growing.
if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
hashGrow(t, h)
goto again // Growing the table invalidates everything, so try again
}
if inserti == nil {
// all current buckets are full, allocate a new one.
newb := h.newoverflow(t, b)
inserti = &newb.tophash[0]
insertk = add(unsafe.Pointer(newb), dataOffset)
val = add(insertk, bucketCnt*uintptr(t.keysize))
}
// store new key/value at insert position
if t.indirectkey {
kmem := newobject(t.key)
*(*unsafe.Pointer)(insertk) = kmem
insertk = kmem
}
if t.indirectvalue {
vmem := newobject(t.elem)
*(*unsafe.Pointer)(val) = vmem
}
typedmemmove(t.key, insertk, key)
*inserti = top
h.count++
done:
if h.flags&hashWriting == 0 {
throw("concurrent map writes")
}
h.flags &^= hashWriting
if t.indirectvalue {
val = *((*unsafe.Pointer)(val))
}
return val
}
-
hash表如果正在扩容,并且这次要操作的bucket还没搬到新hash表中,那么先进行搬迁(扩容细节下面细说)。
-
在buck中寻找key,同时记录下第一个空位置,如果找不到,那么就在空位置中插入数据;如果找到了,那么就更新对应的value;
-
找不到key就看下需不需要扩容,需要扩容并且没有正在扩容,那么就进行扩容,然后回到第一步。
-
找不到key,不需要扩容,但是没有空slot,那么就分配一个overflow bucket挂在链表结尾,用新bucket的第一个slot放存放数据。
4.4 删除 mapdelete
删除某个key的操作与分配类似,由于hashmap的存储结构是数组+链表,所以真正删除key仅仅是将对应的slot设置为empty,并没有减少内存;如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
if raceenabled && h != nil {
callerpc := getcallerpc()
pc := funcPC(mapdelete)
racewritepc(unsafe.Pointer(h), callerpc, pc)
raceReadObjectPC(t.key, key, callerpc, pc)
}
if msanenabled && h != nil {
msanread(key, t.key.size)
}
if h == nil || h.count == 0 {
return
}
if h.flags&hashWriting != 0 {
throw("concurrent map writes")
}
alg := t.key.alg
hash := alg.hash(key, uintptr(h.hash0))
// Set hashWriting after calling alg.hash, since alg.hash may panic,
// in which case we have not actually done a write (delete).
h.flags |= hashWriting
bucket := hash & bucketMask(h.B)
if h.growing() {
growWork(t, h, bucket)
}
b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize)))
top := tophash(hash)
search:
for ; b != nil; b = b.overflow(t) {
for i := uintptr(0); i < bucketCnt; i++ {
if b.tophash[i] != top {
continue
}
k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
k2 := k
if t.indirectkey {
k2 = *((*unsafe.Pointer)(k2))
}
if !alg.equal(key, k2) {
continue
}
// Only clear key if there are pointers in it.
if t.indirectkey {
*(*unsafe.Pointer)(k) = nil
} else if t.key.kind&kindNoPointers == 0 {
memclrHasPointers(k, t.key.size)
}
v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
if t.indirectvalue {
*(*unsafe.Pointer)(v) = nil
} else if t.elem.kind&kindNoPointers == 0 {
memclrHasPointers(v, t.elem.size)
} else {
memclrNoHeapPointers(v, t.elem.size)
}
b.tophash[i] = empty
h.count--
break search
}
}
if h.flags&hashWriting == 0 {
throw("concurrent map writes")
}
h.flags &^= hashWriting
}
-
如果正在扩容,并且操作的bucket还没搬迁完,那么搬迁bucket。
-
找出对应的key,如果key、value是包含指针的那么会清理指针指向的内存,否则不会回收内存。
4.5 扩容 growWork
首先通过赋值、删除流程,我们可以知道,触发扩容的是赋值、删除操作,具体判断要不要扩容的代码片段如下:
首先,判断是否需要扩容的逻辑是
1
2
3
func (h *hmap) growing() bool {
return h.oldbuckets != nil
}
何时 h.oldbuckets
不为 nil
呢?在分配assign
逻辑中,当没有位置给key
使用,而且满足测试条件(装载因子>6.5或有太多溢出通)时,会触发hashGrow
逻辑:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
func hashGrow(t *maptype, h *hmap) {
//判断是否需要sameSizeGrow,否则"真"扩
bigger := uint8(1)
if !overLoadFactor(int64(h.count), h.B) {
bigger = 0
h.flags |= sameSizeGrow
}
// 下面将buckets复制给oldbuckets
oldbuckets := h.buckets
newbuckets := newarray(t.bucket, 1<<(h.B+bigger))
flags := h.flags &^ (iterator | oldIterator)
if h.flags&iterator != 0 {
flags |= oldIterator
}
// 更新hmap的变量
h.B += bigger
h.flags = flags
h.oldbuckets = oldbuckets
h.buckets = newbuckets
h.nevacuate = 0
h.noverflow = 0
// 设置溢出桶
if h.overflow != nil {
if h.overflow[1] != nil {
throw("overflow is not nil")
}
// 交换溢出桶
h.overflow[1] = h.overflow[0]
h.overflow[0] = nil
}
}
OK,下面正式进入重点,扩容阶段;在assign
和delete
操作中,都会触发扩容growWork:
1
2
3
4
5
6
7
8
func growWork(t *maptype, h *hmap, bucket uintptr) {
// 搬迁旧桶,这样assign和delete都直接在新桶集合中进行
evacuate(t, h, bucket&h.oldbucketmask())
//再搬迁一次搬迁过程中的桶
if h.growing() {
evacuate(t, h, h.nevacuate)
}
}
搬迁过程
一般来说,新桶数组大小是原来的2倍(在!sameSizeGrow()条件下),新桶数组前半段可以”类比”为旧桶,对于一个key,搬迁后落入哪一个索引中呢?
1
2
3
假设旧桶数组大小为2^B, 新桶数组大小为2*2^B,对于某个hash值X
若 X & (2^B) == 0,说明 X < 2^B,那么它将落入与旧桶集合相同的索引xi中;
否则,它将落入xi + 2^B中。
例如,对于旧B = 3时,hash1 = 4,hash2 = 20,其搬迁结果类似这样。
源码中有些变量的命名比较简单,容易扰乱思路,我们注明一下便于理解。
变量 | 释义 |
---|---|
x *bmap | 桶x表示与在旧桶时相同的位置,即位于新桶前半段 |
y *bmap | 桶y表示与在旧桶时相同的位置+旧桶数组大小,即位于新桶后半段 |
xi int | 桶x的slot索引 |
yi int | 桶y的slot索引 |
xk unsafe.Pointer | 索引xi对应的key地址 |
yk unsafe.Pointer | 索引yi对应的key地址 |
xv unsafe.Pointer | 索引xi对应的value地址 |
yv unsafe.Pointer | 索引yi对应的value地址 |
搬迁过程如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
// overLoadFactor reports whether count items placed in 1<<B buckets is over loadFactor.
func overLoadFactor(count int, B uint8) bool {
return count > bucketCnt && uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen)
}
// tooManyOverflowBuckets reports whether noverflow buckets is too many for a map with 1<<B buckets.
// Note that most of these overflow buckets must be in sparse use;
// if use was dense, then we'd have already triggered regular map growth.
func tooManyOverflowBuckets(noverflow uint16, B uint8) bool {
// If the threshold is too low, we do extraneous work.
// If the threshold is too high, maps that grow and shrink can hold on to lots of unused memory.
// "too many" means (approximately) as many overflow buckets as regular buckets.
// See incrnoverflow for more details.
if B > 15 {
B = 15
}
// The compiler doesn't see here that B < 16; mask B to generate shorter shift code.
return noverflow >= uint16(1)<<(B&15)
}
{
....
// If we hit the max load factor or we have too many overflow buckets,
// and we're not already in the middle of growing, start growing.
if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
hashGrow(t, h)
goto again // Growing the table invalidates everything, so try again
}
....
}
翻译一下代码,意思就是:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
func overLoadFactor(countint, Buint8) bool {
// return count>bucketCnt&&uintptr(count) >loadFactorNum*(bucketShift(B)/loadFactorDen)
return 元素个数>8 && count>bucket数量*6.5
其中loadFactorNum是常量13,loadFactorDen是常量2,所以是6.5
bucket数量不算overflow bucket
}
func tooManyOverflowBuckets(noverflowuint16, Buint8) bool{
if B > 15 {
B=15
}
// The compiler doesn't see here that B < 16; mask B to generate shorter shift code.
return noverflow>=uint16(1)<<(B&15)
}
if (不是正在扩容 && (元素个数/bucket数超过某个值 || 太多overflow bucket)) {
进行扩容
}
判断完扩容后,如果需要扩容,那么第一步需要做的,就是对hash表进行扩容:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
//仅对hash表进行扩容,这里不进行搬迁
func hashGrow(t *maptype, h *hmap) {
// If we've hit the load factor, get bigger.
// Otherwise, there are too many overflow buckets,
// so keep the same number of buckets and "grow" laterally.
bigger := uint8(1)
if !overLoadFactor(h.count+1, h.B) {
bigger = 0
h.flags |= sameSizeGrow
}
oldbuckets := h.buckets
newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger, nil)
flags := h.flags &^ (iterator | oldIterator)
if h.flags&iterator != 0 {
flags |= oldIterator
}
// commit the grow (atomic wrt gc)
h.B += bigger
h.flags = flags
h.oldbuckets = oldbuckets
h.buckets = newbuckets
h.nevacuate = 0
h.noverflow = 0
if h.extra != nil && h.extra.overflow != nil {
// Promote current overflow buckets to the old generation.
if h.extra.oldoverflow != nil {
throw("oldoverflow is not nil")
}
h.extra.oldoverflow = h.extra.overflow
h.extra.overflow = nil
}
if nextOverflow != nil {
if h.extra == nil {
h.extra = new(mapextra)
}
h.extra.nextOverflow = nextOverflow
}
// the actual copying of the hash table data is done incrementally
// by growWork() and evacuate().
}
扩容的函数hashGrow其实仅仅是进行一些空间分配,字段的初始化,实际的搬迁操作是在growWork函数中
1
2
3
4
5
6
7
8
9
10
func growWork(t *maptype, h *hmap, bucket uintptr) {
// make sure we evacuate the oldbucket corresponding
// to the bucket we're about to use
evacuate(t, h, bucket&h.oldbucketmask())
// evacuate one more oldbucket to make progress on growing
if h.growing() {
evacuate(t, h, h.nevacuate)
}
}
evacuate是进行具体搬迁某个bucket的函数,可以看出growWork会搬迁两个bucket,一个是入参bucket;另一个是h.nevacuate。这个nevacuate是一个顺序累加的值。可以想想如果每次仅仅搬迁进行写操作(赋值/删除)的bucket,那么有可能某些bucket就是一直没有机会访问到,那么扩容就一直没法完成,总是在扩容中的状态,因此会额外进行一次顺序迁移,理论上,有N个old bucket,最多N次写操作,那么必定会搬迁完。
然后我们再看下evacuate具体的实现
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
newbit := h.noldbuckets()
if !evacuated(b) {
// TODO: reuse overflow buckets instead of using new ones, if there
// is no iterator using the old buckets. (If !oldIterator.)
// xy contains the x and y (low and high) evacuation destinations.
var xy [2]evacDst
x := &xy[0]
x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
x.k = add(unsafe.Pointer(x.b), dataOffset)
x.v = add(x.k, bucketCnt*uintptr(t.keysize))
if !h.sameSizeGrow() {
// Only calculate y pointers if we're growing bigger.
// Otherwise GC can see bad pointers.
y := &xy[1]
y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
y.k = add(unsafe.Pointer(y.b), dataOffset)
y.v = add(y.k, bucketCnt*uintptr(t.keysize))
}
for ; b != nil; b = b.overflow(t) {
k := add(unsafe.Pointer(b), dataOffset)
v := add(k, bucketCnt*uintptr(t.keysize))
for i := 0; i < bucketCnt; i, k, v = i+1, add(k, uintptr(t.keysize)), add(v, uintptr(t.valuesize)) {
top := b.tophash[I]
if top == empty {
b.tophash[i] = evacuatedEmpty
continue
}
if top < minTopHash {
throw("bad map state")
}
k2 := k
if t.indirectkey {
k2 = *((*unsafe.Pointer)(k2))
}
var useY uint8
if !h.sameSizeGrow() {
// Compute hash to make our evacuation decision (whether we need
// to send this key/value to bucket x or bucket y).
hash := t.key.alg.hash(k2, uintptr(h.hash0))
if h.flags&iterator != 0 && !t.reflexivekey && !t.key.alg.equal(k2, k2) {
// If key != key (NaNs), then the hash could be (and probably
// will be) entirely different from the old hash. Moreover,
// it isn't reproducible. Reproducibility is required in the
// presence of iterators, as our evacuation decision must
// match whatever decision the iterator made.
// Fortunately, we have the freedom to send these keys either
// way. Also, tophash is meaningless for these kinds of keys.
// We let the low bit of tophash drive the evacuation decision.
// We recompute a new random tophash for the next level so
// these keys will get evenly distributed across all buckets
// after multiple grows.
useY = top & 1
top = tophash(hash)
} else {
if hash&newbit != 0 {
useY = 1
}
}
}
if evacuatedX+1 != evacuatedY {
throw("bad evacuatedN")
}
b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY
dst := &xy[useY] // evacuation destination
if dst.i == bucketCnt {
dst.b = h.newoverflow(t, dst.b)
dst.i = 0
dst.k = add(unsafe.Pointer(dst.b), dataOffset)
dst.v = add(dst.k, bucketCnt*uintptr(t.keysize))
}
dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check
if t.indirectkey {
*(*unsafe.Pointer)(dst.k) = k2 // copy pointer
} else {
typedmemmove(t.key, dst.k, k) // copy value
}
if t.indirectvalue {
*(*unsafe.Pointer)(dst.v) = *(*unsafe.Pointer)(v)
} else {
typedmemmove(t.elem, dst.v, v)
}
dst.i++
// These updates might push these pointers past the end of the
// key or value arrays. That's ok, as we have the overflow pointer
// at the end of the bucket to protect against pointing past the
// end of the bucket.
dst.k = add(dst.k, uintptr(t.keysize))
dst.v = add(dst.v, uintptr(t.valuesize))
}
}
// Unlink the overflow buckets & clear key/value to help GC.
if h.flags&oldIterator == 0 && t.bucket.kind&kindNoPointers == 0 {
b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))
// Preserve b.tophash because the evacuation
// state is maintained there.
ptr := add(b, dataOffset)
n := uintptr(t.bucketsize) - dataOffset
memclrHasPointers(ptr, n)
}
}
if oldbucket == h.nevacuate {
advanceEvacuationMark(h, t, newbit)
}
}
在advanceEvacuationMark中进行nevacuate的累加,遇到已经迁移的bucket会继续累加,一次最多加1024。
5. map设计中的性能优化
读完map源代码发现作者还是做了很多设计上的选择的。本人水平有限,谈不上优劣的点评,这里只是拿出来与读者分享。
HMap中是Bucket的数组,而不是Bucket指针的数组。好的方面是可以一次分配较大内存,减少了分配次数,避免多次调用mallocgc
。但相应的缺点,其一是可扩展哈希的算法并没有发生作用,扩容时会造成对整个数组的值拷贝(如果实现上用Bucket指针的数组就是指针拷贝了,代价小很多)。其二是首个bucket与后面产生了不一致性。这个会使删除逻辑变得复杂一点。比如删除后面的溢出链可以直接删除,而对于首个bucket,要等到evalucated
完毕后,整个oldbucket
删除时进行。
没有重用设freelist
重用删除的结点。作者把这个加了一个TODO
的注释,不过想了一下觉得这个做的意义不大。因为一方面,bucket大小并不一致,重用比较麻烦。另一方面,下层存储已经做过内存池的实现了,所以这里不做重用也会在内存分配那一层被重用的,
bucket
直接key/value
和间接key/value
优化。这个优化做得蛮好的。注意看代码会发现,如果key或value小于128字节,则它们的值是直接使用的bucket作为存储的。否则bucket中存储的是指向实际key/value数据的指针,
bucket存8个key/value
对。查找时进行顺序比较。第一次发现高位居然不是用作offset,而是用于加快比较的。定位到bucket之后,居然是一个顺序比较的查找过程。后面仔细想了想,觉得还行。由于bucket只有8个,顺序比较下来也不算过分。仍然是O(1)只不过前面系数大一点点罢了。相当于hash
到一个小范围之后,在这个小范围内顺序查找。
插入删除的优化。前面已经提过了,插入只要找到相同的key
或者第一个空位,bucket中如果存在一个以上的相同key
,前面覆盖后面的(只是如果,实际上不会发生)。而删除就需要遍历完所有bucket溢出链了。这样map
的设计就是为插入优化的。考虑到一般的应用场景,这个应该算是很合理的。
作者还列了另个2个TODO:将多个几乎要empty
的bucket合并;如果table
中元素很少,考虑shrink table
。(毕竟现在的实现只是单纯的grow)。