redis 常见面试题
常见问题
1、什么是Redis?
Redis 全称为 Remote Dictionary Server
Redis本质上是一个Key-Value类型的内存数据库,很像memcached
,整个数据库统统加载在内存当中进行操作,定期通过异步操作把数据库数据flush到硬盘上进行保存。因为是纯内存操作,Redis的性能非常出色,每秒可以处理超过 10万次读写操作,是已知性能最快的Key-Value DB。
Redis的出色之处不仅仅是性能,Redis最大的魅力是支持保存多种数据结构,此外单个value的最大限制是1GB,不像 memcached只能保存1MB的数据,因此Redis可以用来实现很多有用的功能,比方说用他的List来做FIFO双向链表,实现一个轻量级的高性能消息队列服务,用他的Set可以做高性能的tag系统等等。
另外Redis也可以对存入的Key-Value设置expire时间,因此也可以被当作一个功能加强版的memcached来用。
Redis的主要缺点是数据库容量受到物理内存的限制,不能用作海量数据的高性能读写,因此Redis适合的场景主要局限在较小数据量的高性能操作和运算上。
假如Redis里面有1亿个key,其中有10w个key是以某个固定的已知的前缀开头的,如果将它们全部找出来?
使用keys指令可以扫出指定模式的key列表。
对方接着追问:如果这个redis正在给线上的业务提供服务,那使用keys指令会有什么问题?
这个时候你要回答redis关键的一个特性:redis的单线程的。keys指令会导致线程阻塞一段时间,线上服务会停顿,直到指令执行完毕,服务才能恢复。这个时候可以使用scan指令,scan指令可以无阻塞的提取出指定模式的key列表,但是会有一定的重复概率,在客户端做一次去重就可以了,但是整体所花费的时间会比直接用keys指令长。
2、Redis相比memcached有哪些优势?
- memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型
- redis的速度比memcached快很多
- redis可以持久化其数据
3、Redis支持哪几种数据类型?
1
String、List、Set、Sorted Set、hashes
4、Redis主要消耗什么物理资源?
1
redis是一种基于内存高性能的数据库--- 主要依赖于内存
内存。
8、一个字符串类型的值能存储最大容量是多少?
512M
9、为什么Redis需要把所有数据放到内存中?
Redis为了达到最快的读写速度将数据都读到内存中,并通过异步的方式将数据写入磁盘。所以redis具有快速和数据持久化的特征。如果不将数据放在内存中,磁盘I/O速度为严重影响redis的性能。在内存越来越便宜的今天,redis将会越来越受欢迎。 如果设置了最大使用的内存,则数据已有记录数达到内存限值后不能继续插入新值。
14、Redis支持的Java客户端都有哪些?官方推荐用哪个?
Redisson、Jedis、lettuce等等,官方推荐使用Redisson。
15、Redis和Redisson有什么关系?
Redisson是一个高级的分布式协调Redis客服端,能帮助用户在分布式环境中轻松实现一些Java的对象 (Bloom filter, BitSet, Set, SetMultimap, ScoredSortedSet, SortedSet, Map, ConcurrentMap, List, ListMultimap, Queue, BlockingQueue, Deque, BlockingDeque, Semaphore, Lock, ReadWriteLock, AtomicLong, CountDownLatch, Publish / Subscribe, HyperLogLog)。
16、Jedis与Redisson对比有什么优缺点?
Jedis是Redis的Java实现的客户端,其API提供了比较全面的Redis命令的支持;Redisson实现了分布式和可扩展的Java数据结构,和Jedis相比,功能较为简单,不支持字符串操作,不支持排序、事务、管道、分区等Redis特性。Redisson的宗旨是促进使用者对Redis的关注分离,从而让使用者能够将精力更集中地放在处理业务逻辑上。
17、Redis如何设置密码及验证密码?
设置密码:config set requirepass 123456
授权密码:auth 123456
24、怎么测试Redis的连通性?
ping
28、Redis key的过期时间和永久有效分别怎么设置?
EXPIRE和PERSIST命令。
29、Redis如何做内存优化?
尽可能使用散列表(hashes),散列表(是说散列表里面存储的数少)使用的内存非常小,所以你应该尽可能的将你的数据模型抽象到一个散列表里面。比如你的web系统中有一个用户对象,不要为这个用户的名称,姓氏,邮箱,密码设置单独的key,而是应该把这个用户的所有信息存储到一张散列表里面.
30、Redis回收进程如何工作的?
一个客户端运行了新的命令,添加了新的数据。
Redi检查内存使用情况,如果大于maxmemory
的限制, 则根据设定好的策略进行回收。
一个新的命令被执行,等等。
所以我们不断地穿越内存限制的边界,通过不断达到边界然后不断地回收回到边界以下。
如果一个命令的结果导致大量内存被使用(例如很大的集合的交集保存到一个新的键),不用多久内存限制就会被这个内存使用量超越。
31、Redis回收使用的是什么算法?
LRU算法(Least Recently Used 最近最少使用)
36、Redis持久化数据和缓存怎么做扩容?
如果Redis被当做缓存使用,使用一致性哈希实现动态扩容缩容。
如果Redis被当做一个持久化存储使用,必须使用固定的keys-to-nodes映射关系,节点的数量一旦确定不能变化。否则的话(即Redis节点需要动态变化的情况),必须使用可以在运行时进行数据再平衡的一套系统,而当前只有Redis集群可以做到这样。
37、分布式Redis是前期做还是后期规模上来了再做好?为什么?
既然Redis是如此的轻量(单实例只使用1M内存),为防止以后的扩容,最好的办法就是一开始就启动较多实例。即便你只有一台服务器,你也可以一开始就让Redis以分布式的方式运行,使用分区,在同一台服务器上启动多个实例。
一开始就多设置几个Redis实例,例如32或者64个实例,对大多数用户来说这操作起来可能比较麻烦,但是从长久来看做这点牺牲是值得的。
这样的话,当你的数据不断增长,需要更多的Redis服务器时,你需要做的就是仅仅将Redis实例从一台服务迁移到另外一台服务器而已(而不用考虑重新分区的问题)。一旦你添加了另一台服务器,你需要将你一半的Redis实例从第一台机器迁移到第二台机器。
38、Twemproxy是什么?
Twemproxy
是Twitter维护的(缓存)代理系统,代理Memcached的ASCII协议和Redis协议。它是单线程程序,使用c语言编写,运行起来非常快。它是采用Apache 2.0 license的开源软件。 Twemproxy支持自动分区,如果其代理的其中一个Redis节点不可用时,会自动将该节点排除(这将改变原来的keys-instances的映射关系,所以你应该仅在把Redis当缓存时使用Twemproxy)。 Twemproxy本身不存在单点问题,因为你可以启动多个Twemproxy实例,然后让你的客户端去连接任意一个Twemproxy实例。 Twemproxy是Redis客户端和服务器端的一个中间层,由它来处理分区功能应该不算复杂,并且应该算比较可靠的。
39、支持一致性哈希的客户端有哪些?
Redis-rb、Predis等。
40、Redis与其他key-value存储有什么不同?
Redis有着更为复杂的数据结构并且提供对他们的原子性操作,这是一个不同于其他数据库的进化路径。Redis的数据类型都是基于基本数据结构的同时对程序员透明,无需进行额外的抽象。
Redis运行在内存中但是可以持久化到磁盘,所以在对不同数据集进行高速读写时需要权衡内存,应为数据量不能大于硬件内存。在内存数据库方面的另一个优点是, 相比在磁盘上相同的复杂的数据结构,在内存中操作起来非常简单,这样Redis可以做很多内部复杂性很强的事情。 同时,在磁盘格式方面他们是紧凑的以追加的方式产生的,因为他们并不需要进行随机访问。
41、Redis的内存占用情况怎么样?
给你举个例子: 100万个键值对(键是0到999999值是字符串“hello world”)在我的32位的Mac笔记本上用了100MB。同样的数据放到一个key里只需要16MB,这是因为键值有一个很大的开销。 在Memcached上执行也是类似的结果,但是相对Redis的开销要小一点点,因为Redis会记录类型信息引用计数等等。
当然,大键值对时两者的比例要好很多。
64位的系统比32位的需要更多的内存开销,尤其是键值对都较小时,这是因为64位的系统里指针占用了8个字节。 但是,当然,64位系统支持更大的内存,所以为了运行大型的Redis服务器或多或少的需要使用64位的系统。
42、都有哪些办法可以降低Redis的内存使用情况呢?
如果你使用的是32位的Redis实例,可以好好利用Hash,list,sorted set,set等集合类型数据,因为通常情况下很多小的Key-Value可以用更紧凑的方式存放到一起。
43、查看Redis使用情况及状态信息用什么命令?
info
44、Redis的内存用完了会发生什么?
如果达到设置的上限,Redis的写命令会返回错误信息(但是读命令还可以正常返回。)或者你可以将Redis当缓存来使用配置淘汰机制,当Redis达到内存上限时会冲刷掉旧的内容。
45、Redis是单线程的,如何提高多核CPU的利用率?
可以在同一个服务器部署多个Redis的实例,并把他们当作不同的服务器来使用,在某些时候,无论如何一个服务器是不够的, 所以,如果你想使用多个CPU,你可以考虑一下分片(shard)。
46、一个Redis实例最多能存放多少的keys?List、Set、Sorted Set他们最多能存放多少元素?
理论上Redis可以处理多达2^32的keys,并且在实际中进行了测试,每个实例至少存放了2亿5千万的keys。我们正在测试一些较大的值。
任何list、set、和sorted set都可以放2^32个元素。
换句话说,Redis的存储极限是系统中的可用内存值。
47、Redis常见性能问题和解决方案?
- Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件
- 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次
- 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内
- 尽量避免在压力很大的主库上增加从库
- 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3…
这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。
50、修改配置不重启Redis会实时生效吗?
针对运行实例,有许多配置选项可以通过 CONFIG SET 命令进行修改,而无需执行任何形式的重启。 从 Redis 2.2 开始,可以从 AOF 切换到 RDB 的快照持久性或其他方式而不需要重启 Redis。检索 ‘CONFIG GET *’ 命令获取更多信息。
但偶尔重新启动是必须的,如为升级 Redis 程序到新的版本,或者当你需要修改某些目前 CONFIG 命令还不支持的配置参数的时候。
Redis的并发竞争问题如何解决
主要是发生在并发写竞争。
- 1.使用乐观锁的方式进行解决;(watch机制配合事务锁)
-
2.排队的机制进行。将所有需要对同一个key的请求进行入队操作,然后用一个消费者线程从队头依次读出请求,并对相应的key进行操作。这样对于同一个key的所有请求就都是顺序访问,正常逻辑下则不会有写失败的情况下产生 。从而最大化写逻辑的总体效率。
- 1.客户端角度,为保证每个客户端间正常有序与Redis进行通信,对连接进行池化,同时对客户端读写Redis操作采用内部锁synchronized。
- 2.服务器角度,利用setnx实现锁。
持久化
快照模式
快照模式(RDB)能够在指定的时间间隔能对你的数据进行快照存储,进行全量持久化
使用SNAPSHOTTING模式,需要在redis.conf中设置配置参数:
1
2
3
save 900 1
save 300 10
save 60 10000
上面三组命令也是非常好理解的,就是说900
指的是“秒数”,1
指的是“change次数”,接下来如果在“900s“内有1次更改,那么就执行save保存,同样的道理,如果300s内有10次change,60s内有1w次change,那么也会执行save操作。
AOF
AOF
持久化记录服务器执行的所有写操作命令进行增量持久化,并在服务器启动时,通过重新执行这些命令来还原数据集。AOF命令以redis协议追加保存每次写的操作到文件末尾.Redis还能对AOF文件进行后台重写,使得AOF文件的体积不至于过大. AOF
文件的体积通常要大于 RDB
文件的体积。根据所使用的 fsync
策略,AOF
的速度可能会慢于 RDB
。
AOF 的默认策略为每秒钟 fsync
一次。(总是fsync 、从不fsync)
Redis 还可以同时使用 AOF
持久化和 RDB
持久化。 在这种情况下, 当 Redis 重启时, 它会优先使用 AOF
文件来还原数据集, 因为 AOF 文件保存的数据集通常比 RDB 文件所保存的数据集更完整。
如果突然机器掉电会怎样?取决于aof
日志sync
属性的配置,如果不要求性能,在每条写指令时都sync
一下磁盘,就不会丢失数据。但是在高性能的要求下每次都sync
是不现实的,一般都使用定时sync
,比如1s1次,这个时候最多就会丢失1s的数据。
bgsave
(RDB方式)的原理是什么?主要是两点fork
和cow
。fork
是指redis通过创建子进程来进行bgsave
操作,cow
指的是copy on write
(写时复制),子进程创建后,父子进程共享数据段,父进程继续提供读写服务,写脏的页面数据会逐渐和子进程分离开来。
父进程在保存 RDB 文件时唯一要做的就是 fork
出一个子进程,然后这个子进程就会处理接下来的所有保存工作,父进程无须执行任何磁盘 I/O 操作。 RDB
在恢复大数据集时的速度比 AOF
的恢复速度要快。
49、如何选择合适的持久化方式?
一般来说,如果想达到足以媲美PostgreSQL
的数据安全性, 你应该同时使用两种持久化功能。如果你非常关心你的数据,但仍然可以承受数分钟以内的数据丢失,那么你可以只使用RDB持久化。
有很多用户都只使用AOF持久化,但并不推荐这种方式:因为定时生成RDB快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比AOF恢复的速度要快,除此之外, 使用RDB还可以避免之前提到的AOF程序的bug。
redis 最适合的场景
Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用Memcached,何时使用Redis呢?
如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点:
- Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。
- Redis支持数据的备份,即master-slave模式的数据备份。
- Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
会话缓存
最常用的一种使用Redis的情景是会话缓存(session cache
)。用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,现在,他们还会这样吗?幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用Redis来缓存会话的文档。甚至广为人知的商业平台Magento也提供Redis的插件。
全页缓存
除基本的会话token
之外,Redis还提供很简便的全页缓存(FPC
)平台。回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC。
再次以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。
此外,对WordPress的用户来说,Pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。
队列
Reids在内存存储引擎领域的一大优点是提供 list
和 set
操作,这使得Redis能作为一个很好的消息队列平台来使用。Redis作为队列使用的操作,就类似于本地程序语言(如Python)对 list 的 push/pop 操作。
如果你快速的在Google中搜索“Redis queues”,你马上就能找到大量的开源项目,这些项目的目的就是利用Redis创建非常好的后端工具,以满足各种队列需求。例如,Celery有一个后台就是使用Redis作为broker,你可以从这里去查看。
排行榜/计数器
Redis在内存中对数字进行递增或递减的操作实现的非常好。集合(Set)和有序集合(Sorted Set)也使得我们在执行这些操作的时候变的非常简单,Redis只是正好提供了这两种数据结构。所以,我们要从排序集合中获取到排名最靠前的10个用户–我们称之为“user_scores”,我们只需要像下面一样执行即可:
当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执行:
1
ZRANGE user_scores 0 10 WITHSCORES
Agora Games
就是一个很好的例子,用Ruby实现的,它的排行榜就是使用Redis来存储数据的,你可以在这里看到。
发布/订阅
最后(但肯定不是最不重要的)是Redis的发布/订阅功能。发布/订阅的使用场景确实非常多。我已看见人们在社交网络连接中使用,还可作为基于发布/订阅的脚本触发器,甚至用Redis的发布/订阅功能来建立聊天系统。
Redis提供的所有特性中,我感觉这个是喜欢的人最少的一个,虽然它为用户提供如果此多功能。
性能问题和解决方案
- Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照。
- Master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久化,如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。
- Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。
- Redis主从复制的性能问题,为了主从复制的速度和连接的稳定性,Slave和Master最好在同一个局域网内。
缓存失效策略和主键失效机制
作为缓存系统都要定期清理无效数据,就需要一个主键失效和淘汰策略.
在Redis当中,有生存期的key被称为volatile。在创建缓存时,要为给定的key设置生存期,当key过期的时候(生存期为0),它可能会被删除。
影响生存时间的一些操作
生存时间可以通过使用 DEL
命令来删除整个 key 来移除,或者被 SET
和 GETSET
命令覆盖原来的数据,也就是说,修改key对应的value和使用另外相同的key和value来覆盖以后,当前数据的生存时间不同。
比如说,对一个 key 执行INCR
命令,对一个列表进行LPUSH
命令,或者对一个哈希表执行HSET
命令,这类操作都不会修改 key 本身的生存时间。另一方面,如果使用RENAME
对一个 key 进行改名,那么改名后的 key的生存时间和改名前一样。
RENAME
命令的另一种可能是,尝试将一个带生存时间的 key 改名成另一个带生存时间的 another_key ,这时旧的 another_key (以及它的生存时间)会被删除,然后旧的 key 会改名为 another_key ,因此,新的 another_key 的生存时间也和原本的 key 一样。使用PERSIST
命令可以在不删除 key 的情况下,移除 key 的生存时间,让 key 重新成为一个persistent key
。
如何更新生存时间
可以对一个已经带有生存时间的 key 执行EXPIRE
命令,新指定的生存时间会取代旧的生存时间。过期时间的精度已经被控制在1ms之内,主键失效的时间复杂度是O(1)
,
EXPIRE
和TTL
命令搭配使用,TTL
可以查看key的当前生存时间。设置成功返回 1
;当 key 不存在或者不能为 key 设置生存时间时,返回 0
。
最大缓存配置
在 redis 中,允许用户设置最大使用内存大小
1
server.maxmemory
默认为0
,没有指定最大缓存,如果有新的数据添加,超过最大内存则会使redis崩溃,所以一定要设置。redis 内存数据集大小上升到一定大小的时候,就会实行数据淘汰策略。
6种数据淘汰策略:
- volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
- volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
- volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
- allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
- allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
- no-enviction(驱逐):禁止驱逐数据
注意这里的6种机制,volatile
和allkeys
规定了是对已设置过期时间的数据集淘汰数据还是从全部数据集淘汰数据,后面的lru
、ttl
以及random
是三种不同的淘汰策略,再加上一种no-enviction
永不回收的策略。
使用策略规则:
- 如果数据呈现幂律分布,也就是一部分数据访问频率高,一部分数据访问频率低,则使用
allkeys-lru
- 如果数据呈现平等分布,也就是所有的数据访问频率都相同,则使用
allkeys-random
三种数据淘汰策略:
ttl和random比较容易理解,实现也会比较简单。主要是Lru最近最少使用淘汰策略,设计上会对key 按失效时间排序,然后取最先失效的key进行淘汰(???)
并发竞争问题解决
Redis为单进程单线程模式,采用队列模式将并发访问变为串行访问。Redis本身没有锁的概念,Redis对于多个客户端连接并不存在竞争,但是在Jedis客户端对Redis进行并发访问时会发生连接超时、数据转换错误、阻塞、客户端关闭连接等问题,这些问题均是由于客户端连接混乱造成。对此有2种解决方法:
-
- 客户端角度,为保证每个客户端间正常有序与Redis进行通信,对连接进行池化,同时对客户端读写Redis操作采用内部锁synchronized。
-
- 服务器角度,利用setnx实现锁。
注:对于第一种,需要应用程序自己处理资源的同步,可以使用的方法比较通俗,可以使用synchronized也可以使用lock;第二种需要用到Redis的setnx命令,但是需要注意一些问题。
事务
事务是一个单独的隔离操作:事务中的所有命令都会序列化、按顺序地执行。事务在执行的过程中,不会被其他客户端发送来的命令请求所打断。
事务是一个原子操作:事务中的命令要么全部被执行,要么全部都不执行。
redis 中的事物分成两个层面,一是在多个操作进行拼装时,如果有指令错误,那么所有指令都不会执行。当指令拼装成功后,这些指令将一起作为一个操作插入到redis的操作列表中,执行时不会被插入,但是如果执行时指令出现错误,可能出现部分指令执行成功,部分失败的情况。此时是不具有原子性的。
事务相关的命令有哪几个?
1
MULTI、EXEC、DISCARD、WATCH
事物和CAS
和众多其它数据库一样,Redis作为NoSQL数据库也同样提供了事务机制。在Redis中,MULTI/EXEC/DISCARD/WATCH
这四个命令是我们实现事务的基石。相信对有关系型数据库开发经验的开发者而言这一概念并不陌生,即便如此,我们还是会简要的列出Redis中事务的实现特征:
- 在事务中的所有命令都将会被串行化的顺序执行,事务执行期间,Redis不会再为其它客户端的请求提供任何服务,从而保证了事物中的所有命令被原子的执行。
- 和关系型数据库中的事务相比,在Redis事务中如果有某一条命令执行失败,其后的命令仍然会被继续执行。
- 我们可以通过MULTI命令开启一个事务,有关系型数据库开发经验的人可以将其理解为”BEGIN TRANSACTION”语句。在该语句之后执行的命令都将被视为事务之内的操作,最后我们可以通过执行
EXEC/DISCARD
命令来提交/回滚该事务内的所有操作。这两个Redis命令可被视为等同于关系型数据库中的COMMIT/ROLLBACK
语句。 - 在事务开启之前,如果客户端与服务器之间出现通讯故障并导致网络断开,其后所有待执行的语句都将不会被服务器执行。然而如果网络中断事件是发生在客户端执行
EXEC
命令之后,那么该事务中的所有命令都会被服务器执行。 - 当使用
Append-Only
模式时,Redis会通过调用系统函数write
将该事务内的所有写操作在本次调用中全部写入磁盘。然而如果在写入的过程中出现系统崩溃,如电源故障导致的宕机,那么此时也许只有部分数据被写入到磁盘,而另外一部分数据却已经丢失。
Redis服务器会在重新启动时执行一系列必要的一致性检测,一旦发现类似问题,就会立即退出并给出相应的错误提示。此时,我们就要充分利用Redis工具包中提供的redis-check-aof工具,该工具可以帮助我们定位到数据不一致的错误,并将已经写入的部分数据进行回滚。修复之后我们就可以再次重新启动Redis服务器了。
WATCH命令和基于CAS的乐观锁:
在Redis的事务中,WATCH命令可用于提供CAS(check-and-set)功能。假设我们通过WATCH命令在事务执行之前监控了多个Keys,倘若在WATCH之后有任何Key的值发生了变化,EXEC命令执行的事务都将被放弃,同时返回Null multi-bulk应答以通知调用者事务执行失败。例如,我们再次假设Redis中并未提供incr命令来完成键值的原子性递增,如果要实现该功能,我们只能自行编写相应的代码。其伪码如下:
1
2
3
val = GET mykey
val = val + 1
SET mykey $val
以上代码只有在单连接的情况下才可以保证执行结果是正确的,因为如果在同一时刻有多个客户端在同时执行该段代码,那么就会出现多线程程序中经常出现的一种错误场景–竞态争用(race condition)。比如,客户端A和B都在同一时刻读取了mykey的原有值,假设该值为10,此后两个客户端又均将该值加一后set回Redis服务器,这样就会导致mykey的结果为11,而不是我们认为的12。为了解决类似的问题,我们需要借助WATCH命令的帮助,见如下代码:
WATCH mykey
val = GET mykey
val = val + 1
MULTI
SET mykey $val
EXEC
和此前代码不同的是,新代码在获取mykey的值之前先通过WATCH命令监控了该键,此后又将set命令包围在事务中,这样就可以有效的保证每个连接在执行EXEC之前,如果当前连接获取的mykey的值被其它连接的客户端修改,那么当前连接的EXEC命令将执行失败。这样调用者在判断返回值后就可以获悉val是否被重新设置成功。
集群
Redis集群方案应该怎么做?都有哪些方案?
-
twemproxy
,大概概念是,它类似于一个代理方式,使用方法和普通redis无任何区别,设置好它下属的多个redis实例后,使用时在本需要连接redis的地方改为连接twemproxy,它会以一个代理的身份接收请求并使用一致性hash算法,将请求转接到具体redis,将结果再返回twemproxy。使用方式简便(相对redis只需修改连接端口),对旧项目扩展的首选。 问题:twemproxy自身单端口实例的压力,使用一致性hash后,对redis节点数量改变时候的计算值的改变,数据无法自动移动到新的节点。 -
codis
,目前用的最多的集群方案,基本和twemproxy一致的效果,但它支持在 节点数量改变情况下,旧节点数据可恢复到新hash节点。 -
redis cluster3.0自带的集群,特点在于他的分布式算法不是一致性hash,而是hash槽的概念,以及自身支持节点设置从节点。具体看官方文档介绍。
-
在业务代码层实现,起几个毫无关联的redis实例,在代码层,对key 进行hash计算,然后去对应的redis实例操作数据。 这种方式对hash层代码要求比较高,考虑部分包括,节点失效后的替代算法方案,数据震荡后的自动脚本恢复,实例的监控,等等。
Redis Sentinal着眼于高可用,在master宕机时会自动将slave提升为master,继续提供服务。
Redis Cluster着眼于扩展性,在单个redis内存不足时,使用Cluster进行分片存储。
哈希槽的概念
Redis集群没有使用一致性hash,而是引入了哈希槽的概念,Redis集群有16384(1024 * 16 )个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽,集群的每个节点负责一部分hash槽。
由于redis 只有16384个槽位,所以集群最多节点数应该也只有16384个
集群方案什么情况下会导致整个集群不可用?
有A,B,C三个节点的集群,在没有复制模型的情况下,如果节点B失败了,那么整个集群就会以为缺少5501-11000这个范围的槽而不可用。
19、Redis集群的主从复制模型是怎样的?
为了使在部分节点失败或者大部分节点无法通信的情况下集群仍然可用,所以集群使用了主从复制模型,每个节点都会有N-1个复制品.
20、Redis集群会有写操作丢失吗?为什么?
Redis并不能保证数据的强一致性,这意味这在实际中集群在特定的条件下可能会丢失写操作。
21、Redis集群之间是如何复制的?
异步复制
23、Redis集群如何选择数据库?
Redis集群目前无法做数据库选择,默认在0数据库。
master-slave
同步机制
Redis可以使用主从同步,从从同步。第一次同步时,主节点做一次bgsave
,并同时将后续修改操作记录到内存buffer,待完成后将rdb
文件全量同步到复制节点,复制节点接受完成后将rdb
镜像加载到内存。加载完成后,再通知主节点将期间修改的操作记录同步到复制节点进行重放就完成了同步过程。
分布式锁 先拿setnx来争抢锁,抢到之后,再用expire给锁加一个过期时间防止锁忘记了释放。
这时候对方会告诉你说你回答得不错,然后接着问如果在setnx之后执行expire之前进程意外crash或者要重启维护了,那会怎么样?
这时候你要给予惊讶的反馈:唉,是喔,这个锁就永远得不到释放了。紧接着你需要抓一抓自己得脑袋,故作思考片刻,好像接下来的结果是你主动思考出来的,然后回答:我记得set指令有非常复杂的参数,这个应该是可以同时把setnx和expire合成一条指令来用的!对方这时会显露笑容,心里开始默念:摁,这小子还不错。
异步队列
一般使用list结构作为队列,rpush生产消息,lpop消费消息。当lpop没有消息的时候,要适当sleep一会再重试。
如果对方追问可不可以不用sleep呢?list还有个指令叫blpop,在没有消息的时候,它会阻塞住直到消息到来。
如果对方追问能不能生产一次消费多次呢?使用pub/sub主题订阅者模式,可以实现1:N的消息队列。
如果对方追问pub/sub有什么缺点?在消费者下线的情况下,生产的消息会丢失,得使用专业的消息队列如rabbitmq等。
如果对方追问redis如何实现延时队列?我估计现在你很想把面试官一棒打死如果你手上有一根棒球棍的话,怎么问的这么详细。但是你很克制,然后神态自若的回答道:使用sortedset,拿时间戳作为score,消息内容作为key调用zadd来生产消息,消费者用zrangebyscore指令获取N秒之前的数据轮询进行处理。
到这里,面试官暗地里已经对你竖起了大拇指。但是他不知道的是此刻你却竖起了中指,在椅子背后。
Pipeline有什么好处,为什么要用pipeline?
可以将多次IO往返的时间缩减为一次,前提是pipeline执行的指令之间没有因果相关性。使用redis-benchmark进行压测的时候可以发现影响redis的QPS峰值的一个重要因素是pipeline批次指令的数目。
32、Redis如何做大量数据插入? Redis2.6开始redis-cli支持一种新的被称之为pipe mode的新模式用于执行大量数据插入工作。
分区
33、为什么要做Redis分区?
分区可以让Redis管理更大的内存,Redis将可以使用所有机器的内存。如果没有分区,你最多只能使用一台机器的内存。分区使Redis的计算能力通过简单地增加计算机得到成倍提升,Redis的网络带宽也会随着计算机和网卡的增加而成倍增长。
34、你知道有哪些Redis分区实现方案?
-
客户端分区
就是在客户端就已经决定数据会被存储到哪个redis节点或者从哪个redis节点读取。大多数客户端已经实现了客户端分区。 -
代理分区
意味着客户端将请求发送给代理,然后代理决定去哪个节点写数据或者读数据。代理根据分区规则决定请求哪些Redis实例,然后根据Redis的响应结果返回给客户端。redis
和memcached
的一种代理实现就是Twemproxy
-
查询路由(Query routing) 的意思是客户端随机地请求任意一个redis实例,然后由Redis将请求转发给正确的Redis节点。Redis Cluster实现了一种混合形式的查询路由,但并不是直接将请求从一个redis节点转发到另一个redis节点,而是在客户端的帮助下直接redirected到正确的redis节点。
35、Redis分区有什么缺点?
涉及多个key的操作通常不会被支持。例如你不能对两个集合求交集,因为他们可能被存储到不同的Redis实例(实际上这种情况也有办法,但是不能直接使用交集指令)。
同时操作多个key,则不能使用Redis事务.
分区使用的粒度是key,不能使用一个非常长的排序key存储一个数据集(The partitioning granularity is the key, so it is not possible to shard a dataset with a single huge key like a very big sorted set).
当使用分区的时候,数据处理会非常复杂,例如为了备份你必须从不同的Redis实例和主机同时收集RDB / AOF文件。
分区时动态扩容或缩容可能非常复杂。Redis集群在运行时增加或者删除Redis节点,能做到最大程度对用户透明地数据再平衡,但其他一些客户端分区或者代理分区方法则不支持这种特性。然而,有一种预分片的技术也可以较好的解决这个问题。
TODO
setnx